最新网址:ranwen6.com
字:
关灯 护眼
燃文天地 > 我的科学时代 > 第七章 《代数的五次方程式之解法》

第七章 《代数的五次方程式之解法》

“喜欢。”余华大方坐下,看着年轻而成熟的华罗庚,面色不改说出了学渣本没有资格说出的话。

喜欢数学。

数学不难。

这可是学霸和学神们的专属语录。

“老板,上一碗馄饨。”

听到余华的回答,华罗庚面含微笑,兴趣愈发浓厚,先是朝老板喊了一碗馄饨,而后转头对着余华:“方才闻你读过我的第一篇论文,那我问你,你可读懂了”

“读懂了一些,没有理解太多。”

余华轻轻摇头,回应道。

苏家驹之代数的五次方程式解法不能成立之理由论文,1930年发自沪市科学杂志,一经发表轰动全国数学界,年仅二十岁的华罗庚闻名国内数学界,同年,华罗庚受清华大学数学系主任熊庆之邀请,破格进入清华大学图书馆担任馆员。

整篇论文主要涉及一个内容,反驳苏家驹提出的代数的五次方程式之解法,支持阿贝尔和伽罗瓦的理论证明一般一元五次方程没有根式解。

代数领域,通过根式求解一元一次方程,二次方程,三次方程,以及一元四次方程,这是从事代数研究的数学家们孜孜不倦的目标,经过塔塔利亚、卡尔达诺等一代又一代数学家们不懈努力,最终完成一元四次方程求解。

而后,数学家们再将目光投向了一元五次根式求解,然而,从十六世纪提出问题,到十九世纪初期,五次方程根式求解竟然困扰了数学界整整三百年之久,未能得解。

后来,数学家尼尔斯亨利克阿贝尔反其道而行之,认为五次方程及以上代数方程没有一般形式的根式解,并成功证明,震惊世人,就在人们难以置信的时候,天才数学家伽瓦罗同样证明此理论,为一元五次方程根式求解问题画上句号。

但是,尽管在铁一样的现实面前,还是有人试图推翻这个理论,寻找一元五次方程的根式解,教师苏家驹就是如此,于1926年沪市学艺发表代数的五次方程式之解法,引得国内掀起轩然大波,苏家驹因此风光无限。

数学天赋极高的华罗庚阅读这篇苏文,顿时写信给学艺指出其中错误,但学艺杂志只在1929年5月出版杂志刊载一则简短的更正声明,承认苏文有误,没有道歉,轻飘飘地揭过。

年轻气盛的华罗庚那受得了这个态度,大手一挥,写了一篇稿子发给科学杂志,指名道姓指出其中错误,令苏家驹灰头土脸,轰动国内,最终受邀进入清华。

能在清华当图书馆馆员的人,都不是一般人。

而前身余桦,正好就极为喜欢华罗庚这篇文章。

“读懂了一些,你说说看,苏文谬误之点在何处”华罗庚兴趣更浓了,脸上笑着,吃了一个馄饨,出题考验。

“桦曾研读先生之论,知其谬误在p3,1不能等于2也,夫求未定系数a1,,a24,共计四类:一,a1a3a1,a2a4a2,a3a2a1a7a5,a4a1a2a7a7a3,a14a15。”余华尊敬道,将自己知道的地方逐一说出,言辞平和,条理清晰。

苏文之解最大漏洞,就在全文解析p3之处。

这是极其致命的,但非资深学者无法看出其中问题,即便是华罗庚阅读之初,也认为阿贝尔和伽瓦罗建立的五次方程没有根式解这一大山被推翻,然而仔细研究之后,却找出其中错误。

听到余华所言,华罗庚有些意外,没有料到眼前这位学生能够完整给出谬误之处内容,肯定地点了点头,倒是没有继续提问,夸奖道:“不错不错,大善,你是北平四中几类班级的学生”

推荐阅读: 陆少的隐婚罪妻 武德充沛 不会真有人觉得师尊是凡人吧 仙帝归来 刀危九天 斗罗之一剑太白 从行尸走肉开始的雷神 我手机里的怪穿越了 重生之逆流十年 开局拒绝白富美,我想自己努力